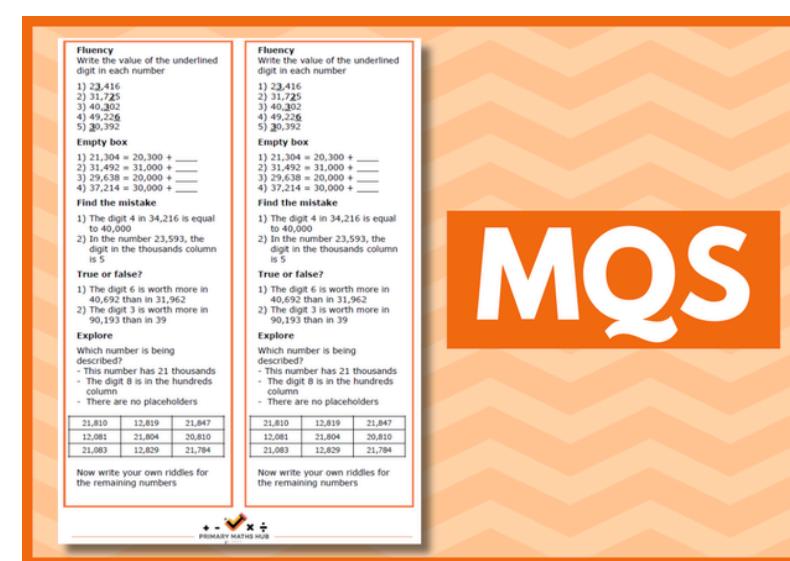
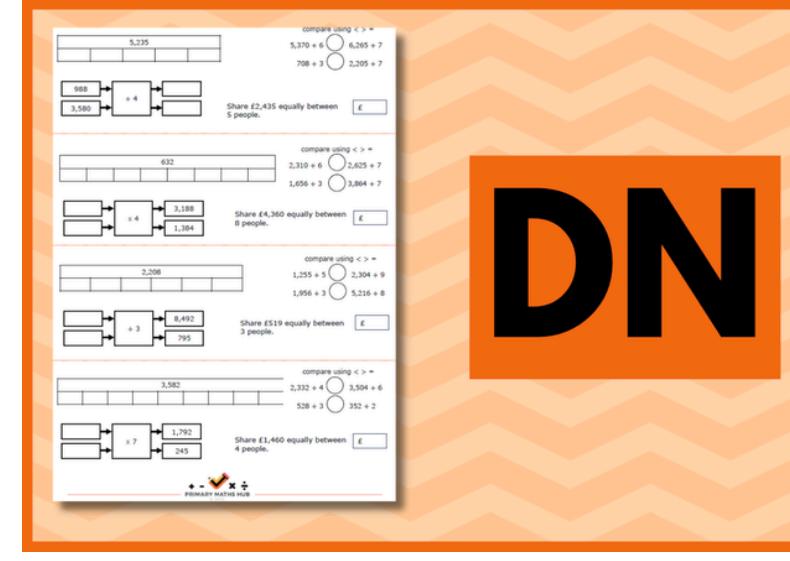


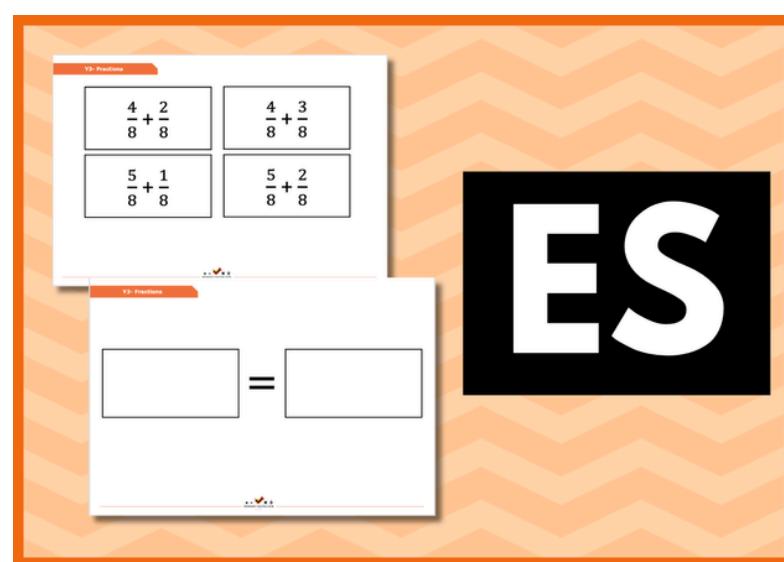
PRIMARY MATHS HUB

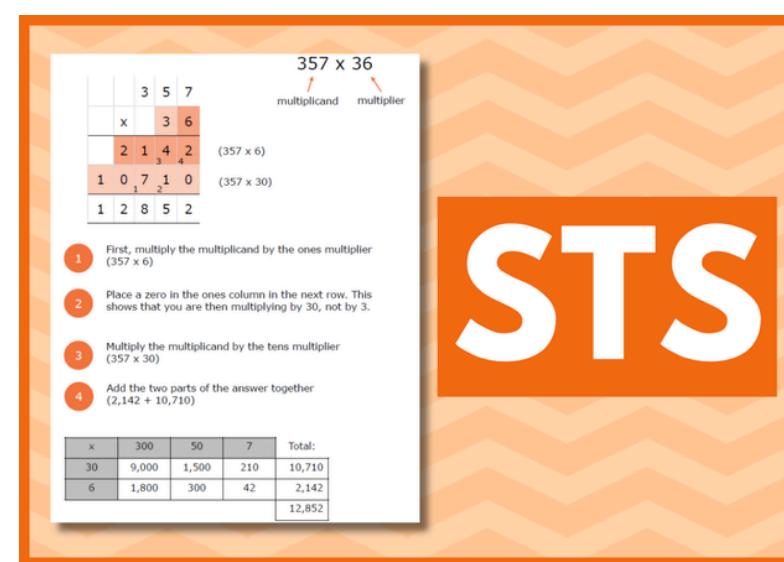

To save time, make resources more accessible, and help you better understand which resource you are downloading, we have assigned a short code/resource key to each resource type. You can see this short code at the end of each resource title. Below is a clear guide to each short code abbreviation.

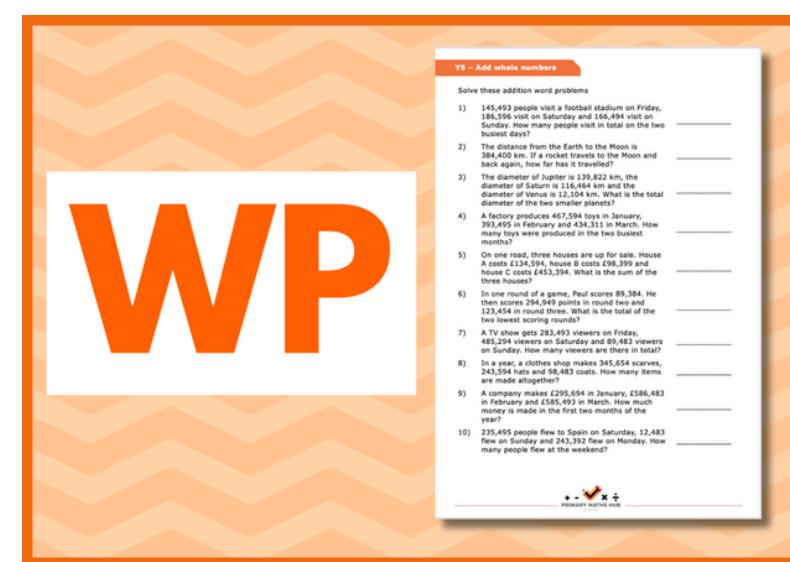
S - Sheet – A sheet resource contains a sheet with a large number of questions with no real format or design. Just large quantities of questions and problems. Complete with answers.

FQS - Fluency Question Sets – Fluency Question Sets provide question strips that are clearly differentiated in three ways. Great for sticking books and meeting the needs of three groups of learners.


MQS - Mixed Question Sheet – Mixed Question Sheets provide a strip of varied question types. Fluency question, empty box, find the mistake, true or false and exploration. All of which are perfect to support mathematical reasoning mastery.


FS - Faded Scaffolding – Faded Scaffolding Strips provide a question strip with progressive levels of scaffolding to support independent learning. Faded Scaffolding Strips are one of the most well used resource types on the site.


R - Reasoning – Reasoning resources are fabulous. Each resource contains a single A4 landscape sheet with four reasoning cards, which can be cut, trimmed and stuck in books. Each reasoning problem is different.


DN - Do Now Task – Starter Tasks. Each DN task has one starter activity involving rehearsal and varied representation. Simple, yet powerful lesson starters.

EQ - Equality Statement – Equality statement resources are great for table-top discussions and exploring pupil understanding of the equals symbol.

STS - Steps to Success – guides are crucial documents that help teachers, parents, and students understand the clear steps to success in each primary maths strategy for calculations. These guides are provided across all domains and are great for subject knowledge.

WP - Word Problems – A simple, yet classic teaching resource. Each WP resource contains a page, possibly two word problems. Pure and simple, word problem after word problem. Complete with answers. Great for problem solving, revision and lesson variation.

$\frac{6}{12} \div 3 =$

a) $\frac{2}{4}$ b) $\frac{6}{4}$ c) $\frac{18}{12}$ d) $\frac{6}{36}$ e) $\frac{2}{12}$

1) Divided both numerator and denominator by whole number
2) Divided denominator by whole number
3) Divided numerator by whole number
4) Correct answer
5) Divided numerator by whole number

HQ

HQ – Hinge Question- A hinge question that allows for clear assessment of a pupil's knowledge and understanding.

What mistake has been made?
 $17 \text{ } 18 \text{ } 19 \text{ } H \text{ } T \text{ } O > 34,082 > \text{ thirty-four thousand, four hundred and eight}$

Using only these digits, how many numbers can you make that would fit in this place in the number?
 forty-six thousand, four hundred and nine < $6 \text{ } 4 \text{ } 9$ < 96,438
 $3 \text{ } 0 \text{ } 6 \text{ } 7 \text{ } 9 \text{ } 4 \text{ } 1$

Order these numbers from smallest to largest.
 eighteen, two hundred and twelve
 $10,002 + 8,100 + 2$

What mistake has been made?
 $17 \text{ } 18 \text{ } 19 \text{ } H \text{ } T \text{ } O > 34,082 > \text{ thirty-four thousand and twenty-eight}$

Using only these digits, how many numbers can you make that would fit in this place in the order?
 forty-six thousand, four hundred and nine < $6 \text{ } 4 \text{ } 9$ < 96,438
 $3 \text{ } 0 \text{ } 6 \text{ } 7 \text{ } 9 \text{ } 4 \text{ } 1$

C

C – Challenges – Sheets with various challenges for pupils to solve within varied representations. Open- and closed-question styles to extend and challenge learners.

sentence stems
 I agree with _____ because...
 I disagree with _____ because...
 _____ is partly right because... however, _____ is incorrect because...
 No idea can be disproved because...
 I think that _____'s idea is correct because...
 I tested _____'s idea by _____ and I found that...

vocabulary
 multiply product numerator denominator fraction unit
 non-unit proper divisor
 line Max

Dividing a mixed fraction by an integer always results in a unit fraction.
 You can multiply a fraction by an integer to convert it to a whole number.

Dividing a fraction by a whole number always results in a proper fraction.
 Dividing a proper fraction by an integer always results in a proper fraction.

Luke Theo

DT

DT – Discussion Task – Tasks to promote oracy and verbal reasoning. Four statements for children to discuss and decide whether they are true or false. Sentence stems and vocabulary included.

11 Compare these calculations using < = >
 4278×34 ○ 43×330
 938×34 ○ 334×37
 21 An athlete runs 470 m in a week. How far does they run in a year?
 22 A company makes 1000 cars in a year. How many cars are made in 12 years?
 23 A company makes 1000 cars in a year. How many cars are made in 12 years?
 24 A company makes 1000 cars in a year. How many cars are made in 12 years?
 25 Write the missing digits to make this multiplication correct.
 $\begin{array}{r} \times 2 \\ \hline 2 & 4 & 8 \\ 2 & 4 & 8 \\ \hline 2 & 4 & 8 \end{array}$
 26 Balloons come in packs of 24. A balloon store has 1000 balloons. How many times as many packs of balloons, New Year balloons are there?
 27 Balloons come in packs of 24. A balloon store has 1000 balloons. How many times as many packs of balloons, New Year balloons are there?
 28 Fill in the missing digits to make this division correct.
 23×49

29 A company makes 1000 cars in a year. How many cars are made in 12 years?
 30 A company makes 1000 cars in a year. How many cars are made in 12 years?
 31 Write the missing digits to make this multiplication correct.
 $\begin{array}{r} \times 2 \\ \hline 2 & 4 & 8 \\ 2 & 4 & 8 \\ \hline 2 & 4 & 8 \end{array}$
 32 Balloons come in packs of 24. A balloon store has 1000 balloons. How many times as many packs of balloons, New Year balloons are there?
 33 Fill in the missing digits to make this division correct.
 23×49

TSQ

TSQ – Test Style Questions – Powerful test-style question strips. Predominantly found in Y5 and Y6, containing question styles that mimic tests such as SATs. Formatted in a neat, printable strip.

1 883,216 people visit a stadium in January, 564,128 visit in February and 601,320 visit in March. What is the total number of visitors in the first three months of the year?
 $883,216 + 564,128 + 601,320$

2 Here are the populations of 4 towns. Which has the lowest population?
 Greenby 583,275
 Lakeside 528,995
 Penley 503,295

3 Insert the missing digits to make this addition correct.
 $1 \text{ } 4 \text{ } \square \text{ } 0 \text{ } 1 \text{ } 8$
 $+ 1 \text{ } 5 \text{ } \square \text{ } 2 \text{ } 0 \text{ } 1$
 $7 \text{ } 3 \text{ } 3 \text{ } 4 \text{ } 0 \text{ } 9$

4 Complete the bar model.
 $191,326 \text{ } 98,279 \text{ } 53,652$

5 This sequence increases by the same amount each time. Add in the missing values.
 $43,216 \text{ } 46,032 \text{ } 49,848$

Rev

Rev – Revision – Revision tasks that mimic arithmetic test questions- a further sheet with varied representation.

Cut up these hexagons and match the edges so that each question is next to its answer.

1. $12 \times 12 \times 12$
 2. $12 \times 12 \times 12$
 3. $12 \times 12 \times 12$
 4. $12 \times 12 \times 12$
 5. $12 \times 12 \times 12$
 6. $12 \times 12 \times 12$
 7. $12 \times 12 \times 12$
 8. $12 \times 12 \times 12$
 9. $12 \times 12 \times 12$
 10. $12 \times 12 \times 12$
 11. $12 \times 12 \times 12$
 12. $12 \times 12 \times 12$
 13. $12 \times 12 \times 12$
 14. $12 \times 12 \times 12$
 15. $12 \times 12 \times 12$
 16. $12 \times 12 \times 12$
 17. $12 \times 12 \times 12$
 18. $12 \times 12 \times 12$
 19. $12 \times 12 \times 12$
 20. $12 \times 12 \times 12$
 21. $12 \times 12 \times 12$
 22. $12 \times 12 \times 12$
 23. $12 \times 12 \times 12$
 24. $12 \times 12 \times 12$
 25. $12 \times 12 \times 12$
 26. $12 \times 12 \times 12$
 27. $12 \times 12 \times 12$
 28. $12 \times 12 \times 12$
 29. $12 \times 12 \times 12$
 30. $12 \times 12 \times 12$
 31. $12 \times 12 \times 12$
 32. $12 \times 12 \times 12$
 33. $12 \times 12 \times 12$
 34. $12 \times 12 \times 12$
 35. $12 \times 12 \times 12$
 36. $12 \times 12 \times 12$
 37. $12 \times 12 \times 12$
 38. $12 \times 12 \times 12$
 39. $12 \times 12 \times 12$
 40. $12 \times 12 \times 12$
 41. $12 \times 12 \times 12$
 42. $12 \times 12 \times 12$
 43. $12 \times 12 \times 12$
 44. $12 \times 12 \times 12$
 45. $12 \times 12 \times 12$
 46. $12 \times 12 \times 12$
 47. $12 \times 12 \times 12$
 48. $12 \times 12 \times 12$
 49. $12 \times 12 \times 12$
 50. $12 \times 12 \times 12$
 51. $12 \times 12 \times 12$
 52. $12 \times 12 \times 12$
 53. $12 \times 12 \times 12$
 54. $12 \times 12 \times 12$
 55. $12 \times 12 \times 12$
 56. $12 \times 12 \times 12$
 57. $12 \times 12 \times 12$
 58. $12 \times 12 \times 12$
 59. $12 \times 12 \times 12$
 60. $12 \times 12 \times 12$
 61. $12 \times 12 \times 12$
 62. $12 \times 12 \times 12$
 63. $12 \times 12 \times 12$
 64. $12 \times 12 \times 12$
 65. $12 \times 12 \times 12$
 66. $12 \times 12 \times 12$
 67. $12 \times 12 \times 12$
 68. $12 \times 12 \times 12$
 69. $12 \times 12 \times 12$
 70. $12 \times 12 \times 12$
 71. $12 \times 12 \times 12$
 72. $12 \times 12 \times 12$
 73. $12 \times 12 \times 12$
 74. $12 \times 12 \times 12$
 75. $12 \times 12 \times 12$
 76. $12 \times 12 \times 12$
 77. $12 \times 12 \times 12$
 78. $12 \times 12 \times 12$
 79. $12 \times 12 \times 12$
 80. $12 \times 12 \times 12$
 81. $12 \times 12 \times 12$
 82. $12 \times 12 \times 12$
 83. $12 \times 12 \times 12$
 84. $12 \times 12 \times 12$
 85. $12 \times 12 \times 12$
 86. $12 \times 12 \times 12$
 87. $12 \times 12 \times 12$
 88. $12 \times 12 \times 12$
 89. $12 \times 12 \times 12$
 90. $12 \times 12 \times 12$
 91. $12 \times 12 \times 12$
 92. $12 \times 12 \times 12$
 93. $12 \times 12 \times 12$
 94. $12 \times 12 \times 12$
 95. $12 \times 12 \times 12$
 96. $12 \times 12 \times 12$
 97. $12 \times 12 \times 12$
 98. $12 \times 12 \times 12$
 99. $12 \times 12 \times 12$
 100. $12 \times 12 \times 12$

PA

PA – Practical Activity – Great table top activities that can be printed and then cut up and pieced back together.

Here are the diameters of the planets in our solar system.

Mercury	4,880 km
Venus	12,154 km
Earth	12,742 km
Mars	6,780 km
Jupiter	139,822 km
Saturn	108,220 km
Uranus	50,724 km
Neptune	49,244 km

1) Compare each pair of planets
 Neptune ○ Mercury
 Jupiter ○ Saturn
 Neptune ○ Earth
 Neptune ○ Mars

2) Scientists are looking to study groups of planets to find similarities and differences. They want to find the following:
 a) The smallest and the largest planets
 b) Planets whose diameters are equal
 c) The planets that have a diameter greater than 10,000 km but less than 50,000 km

3) A new solar system has been discovered! Match each planet to its diameter.

Artemis	Larger than Neptune but smaller than Earth	Amelia	Larger than Mercury but smaller than Earth	Hina	Larger than Jupiter
Goddess	Equal to Earth	Dionysus	Smaller than Mars	Heston	Smaller than Neptune but larger than Jupiter
Artemis	km	Dionysus	km	Heston	km

50,724 79,243 127,312 5,132 4,132 146,159

PS

PS – Problem Solving – Amazing real-world context problems with pupils needing to use knowledge and facts to solve.

